This talk investigates the question under which conditions, if at all, unbounded nesting arises in prosodic structure. In the words of Pinker & Jackendoff (2005: 203), "[r]ecursion refers to a procedure that calls itself, or to a constituent that contains a constituent of the same kind." Only the second conception matters to us here—there is no autonomous procedure of "phonological phrase building" that calls on itself. Rather, phonological phrases arise through a general syntax-prosody mapping procedure, and recursive structure arises only in response to syntactic structure that needs to be mapped. If recursion exists at lower prosodic levels that are not strictly interface-grounded, such as foot structure, this might be different. Specific issues to be addressed include the following:

- Which kinds of syntactic/morphological configurations give rise to recursive prosody?
- What are the empirical characteristics of directly φ-attached vs. ω-adjoined functional elements? This question will be investigated with the help of evidence from English and German.
- Is prosodic recursion ever truly unbounded? Evidence from the Mayan language Kaqchikel (Bennett 2018) bears on this question.
- Types of prosodic recursion: For a prosodic category κ, besides the unbalanced (adjunction) type κ→κ+x, κ→x+κ, is there also the balanced type κ→κ + κ? Evidence from Japanese and Danish (Ito and Mester 2015) will be discussed.
- Are there effects of recursive prosodic structure in prosodic morphology? Relevant evidence is found in Japanese and Yokuts (Guekguezian 2017).
- Are there other kinds of prosodic recursion—recursion below the ω-level, and not motivated by syntax or morphology? Besides recursive σ-structure (rarely mentioned, but see van der Hulst 2010), the central issue here is the existence of recursive feet (argued for in Martínez-Paricio and Kager 2015). Our discussion is likely to remain inconclusive. **Pro:** Ternary stress systems receive a principled analysis. **Con:** Many potential cases have other analyses without recursive feet.

References:

